Normal numbers in the Hausdorff hierarchy

Konstantinos A. Beros

University of North Texas

2016 ASL North American Meeting
Storrs, CT
May 25, 2016
The Wadge hierarchy

Wadge reducibility
Polish spaces X and Y. Subsets $A \subseteq X$ and $B \subseteq Y$. Define

$$A \leq_W B \iff \exists \text{cts } f : X \to Y \text{ s.t. } A = f^{-1}(B)$$

Wadge completeness
Pointclass Γ. Polish space X. Subset $B \in \Gamma(X)$ is Γ-complete iff $A \leq_W B$, for each $A \in \Gamma(2^\omega)$.

Example
$$\{ x \in 2^{\omega \times \omega} : (\forall n)(\forall k) \ x(n, k) = 0 \} \text{ is } \Pi^0_3\text{-complete.}$$

Remark
Wadge completeness is often used to show that a set is properly in a pointclass Γ.
Normal numbers

k-normality
Let $T : [0, 1] \to [0, 1]$ be given by $T(x) = 2x \ (\text{mod } 1)$ (the unilateral shift on binary expansions). A real number $x \in [0, 1]$ is k-normal (to base 2) iff

$$\lim_{n \to \infty} \frac{1}{n} \left| \{ i < n : T^i(x) \in I \} \right| = 2^{-k},$$

for each of the intervals $I = [s \ 2^{-k}, (s + 1) \ 2^{-k})$, with $0 \leq s < 2^k$.

Let N_k denote the set of k-normal numbers.

Note that $N_1 \supset N_2 \supset N_3 \supset \ldots$

A real number is normal (to base 2) iff it is k-normal, for every k.

Combinatorial formulation
A real number x is k-normal iff every binary string of length k occurs with limiting frequency 2^{-k} in the binary expansion of x.
Ki-Linton (1994)

- Each N_k is Π^0_3-complete.
- The set of normal numbers (to a fixed base) is Π^0_3-complete.

Becher-Heiber-Slaman (2014)

The set of numbers normal to every base is Π^0_3-complete.

Becher-Slaman (2014)

The set of numbers normal to at least one base is Σ^0_4-complete.
New results

The difference hierarchy

- Provides an ω_1-length hierarchy within each Δ_α^0.
- For instance, $D_2(\Pi_3^0)$ is the class of differences of Π_3^0 sets.
- Also, $D_\omega(\Pi_3^0)$ is the class of sets of the form

$$
(H_1 \setminus H_2) \cup (H_3 \setminus H_4) \cup \ldots,
$$

where $H_1 \supseteq H_2 \supseteq \ldots$ are Π_3^0 sets.
- Wadge-completeness results in the difference hierarchy are uncommon.

K. Beros

- The set $N_1 \setminus N_2$ is $D_2(\Pi_3^0)$-complete.
- The set $(N_1 \setminus N_2) \cup (N_3 \setminus N_4) \cup \ldots$ is $D_\omega(\Pi_3^0)$-complete.
Theorem
The set $N_1 \setminus N_2$ is $D_2(\Pi^0_3)$-complete.

General approach
Given Π^0_3 sets $L \subseteq H \subseteq 2^\omega$, define a continuous map $f : 2^\omega \to [0,1]$ such that

$$H = f^{-1}(N_1) \text{ and } L = f^{-1}(N_2).$$

Basic building blocks
Observe that $0.011001100110\ldots$ is 2-normal

$\alpha_n = (0110)^n \sim 01$

$\beta_n = (0110)^n \sim 0$

Higher indexed α_n and β_n are closer to being the binary expansions of a 2-normal number.
A permitting condition

Let \langle \cdot, \cdot \rangle : \omega^2 \to \omega be a bijection which is increasing in the second coordinate.

Say \(L = \bigcap_n L_n \), with each \(L_n = \bigcup_p L_{n,p} \) a \(\Sigma^0_2 \) set. Given \(x \in 2^{\omega} \) and \(t = \langle n, p \rangle \), say that \(x \) “appears to be in \(L \) at stage \(t \)” if

\[
\text{dist}(x, L_{n,p}) \leq 1/\langle n, p \rangle
\]

and, for all \(p' < p \),

\[
\text{dist}(x, L_{n,p'}) \leq 1/\langle n, p - 1 \rangle \implies \text{dist}(x, L_{n,p'}) \leq 1/\langle n, p \rangle.
\]

Similarly, one may describe \(x \) as “appearing to be in \(H \) at stage \(t \)”.

Lemma

\(x \in L_n \) iff \(x \) appears to be in \(L \) at stage \(\langle n, p \rangle \), for all but finitely many \(p \). And analogously for \(H \).
Recall: $\alpha_n = (0110)^n \downarrow 01$

Given $x \in 2^\omega$, define binary strings $\sigma_0 \prec \sigma_1 \prec \ldots$ by induction. If x appears to be in L at stage $t = \langle n, p \rangle$, let

$$\sigma' = \sigma_{t-1} \downarrow \alpha_t$$

and, if x does not appear to be in L at stage $t = \langle n, p \rangle$, let

$$\sigma' = \sigma_{t-1} \downarrow (\alpha_n)^k,$$

where k is large enough to skew the frequency of the string 01 in σ' away from $\frac{1}{4}$.

Notice that this does not skew the frequency of 0 and 1 in σ'.
Recall: $\beta_n = (0110)^n \downarrow 0$

If x appears to be in H at stage $t = \langle n, p \rangle$, let

$$\sigma_t = \sigma' \setminus \beta_t$$

and, if x does not appear to be in H at stage t, let

$$\sigma_t = \sigma' \setminus (\beta_n)^k,$$

where k is large enough to skew the frequency of 0 away from $\frac{1}{2}$.

Let $f(x) = 0. \lim \sigma_t$.
Suppose $x \in L$

$\implies (\forall n)(\forall \infty p) \ x$ appears to be in both L and H at stage $\langle n, p \rangle$

\implies each α_n and β_n appears only finitely many times in $\lim \sigma_t$

$\implies f(x) \in N_2$

Suppose $x \notin L$

$\implies (\exists n)(\exists \infty p) \ x$ does not appear to be in L at stage $\langle n, p \rangle$

$\implies \exists n$ there are infinitely many long blocks of α_n, which skew the frequency of 01 in $\lim \sigma_t$

$\implies f(x) \notin N_2$
Note

\[x \in L \text{ vs. } x \notin L \text{ does not affect the frequency of 0 and 1 in } \lim \sigma_t, \]
i.e., it does not affect \(f(x) \in N_1 \).

Thus, the same argument as above shows that

\[x \in H \iff f(x) \in N_1. \]

This completes the proof.