NOTE

Anti-Ramsey Numbers of Subdivided Graphs

Tao Jiang

Department of Mathematics and Statistics, Miami University,
Oxford, Ohio 45056
E-mail: jiangt@muohio.edu

Received January 23, 2001; published online April 23, 2002

Given a positive integer n and a family F of graphs, the anti-Ramsey number $f(n, F)$ is the maximum number of colors in an edge-coloring of K_n such that no subgraph of K_n belonging to F has distinct colors on its edges. The Turán number $ex(n, F)$ is the maximum number of edges of an n-vertex graph that does not contain a member of F as a subgraph. P. Erdős et al. (1975, in Colloq. Math. Soc. Janos Bolyai, Vol. 10, pp. 633–643, North-Holland, Amsterdam) showed for all graphs H that $f(n, H) - ex(n, F) = o(n^2)$, where $F = \{H - e : e \in E(H)\}$. We strengthen their result for the class of graphs in which each edge is incident to a vertex of degree two. We show that $f(n, H) - ex(n, F) = O(n)$ when H belongs to this class. This follows from a new upper bound on $f(n, H)$ that we prove for all graphs H and asymptotically determines $f(n, H)$ for certain graphs H.

© 2002 Elsevier Science (USA)

1. INTRODUCTION

We consider only nonempty simple graphs. A subgraph of an edge-colored graph is rainbow if all of its edges have different colors. Given a positive integer n and a family F of graphs, the anti-Ramsey number $f(n, F)$ is the maximum number of colors in a coloring of $E(K_n)$ that has no rainbow copy of any graph in F. For the purpose of this note, we call a coloring that does not contain a rainbow copy of any graph in F a F-free coloring.

Anti-Ramsey numbers were introduced by Erdős et al. [4]. They showed that these are closely related to Turán numbers. The Turán number $ex(n, F)$ of F is the maximum number of edges of an n-vertex simple graph having no member of F as a subgraph. Given a coloring c of a host
graph G, we define a \textit{representing graph} of c to be a spanning subgraph L of G obtained by taking one edge of each color in c (where L may contain isolated vertices). Given a positive integer n and a graph H, clearly a representing graph of an H-free coloring of $E(K_n)$ does not contain H as a subgraph. Thus we have $f(n, H) \leq ex(n, H)$. Let $\mathcal{H} = \{H - e : e \in E(H)\}$.

Let G be a subgraph of K_n with $ex(n, \mathcal{H})$ edges that does not contain any member of \mathcal{H} as a subgraph. We can define an H-free coloring of $E(K_n)$ using at least $ex(n, \mathcal{H})$ colors by coloring the edges of G with distinct colors and then coloring the remaining edges (if any) in K_n with a new color. Hence, $f(n, H) \geq ex(n, \mathcal{H})$.

\textbf{Proposition 1.1.} Given a positive integer n and a graph H, we have

$$ex(n, \mathcal{H}) \leq f(n, H) \leq ex(n, H),$$

where $\mathcal{H} = \{H - e : e \in E(H)\}$.

The lower and upper bound in Proposition 1.1 could differ even in the order of magnitude. For instance, when H is an odd cycle, $ex(n, H)$ is quadratic in n while $ex(n, \mathcal{H})$ is linear in n. In general, the upper bound $ex(n, H)$ is quite loose, and $f(n, H)$ is much closer to $ex(n, \mathcal{H})$. Erdős et al. [4] showed that $f(n, H) \leq ex(n, H) + o(n^2)$ as $n \rightarrow \infty$. Thus we have

\textbf{Theorem A [4].} $f(n, H) - ex(n, \mathcal{H}) = o(n^2)$, as $n \rightarrow \infty$.

If $d = \min \{\chi(G) : G \in \mathcal{H}\} \geq 3$, then by an earlier result of Erdős and Simonovits [5], we have $ex(n, \mathcal{H}) = \frac{2}{d-1}(\frac{1}{2}n^2) + o(n^2)$, and Theorem A yields $f(n, H) = \frac{2}{d-1}(\frac{1}{2}n^2) + o(n^2)$. This determines $f(n, H)$ asymptotically. If $d \leq 2$, however, we have $ex(n, \mathcal{H}) = o(n^2)$, and Theorem A says little about $f(n, H)$. Erdős et al. [4] therefore proposed studying $f(n, H)$ for graphs H that contains an edge whose deletion leaves a bipartite subgraph, and they put forward two conjectures about $f(n, H)$ when H is a path or a cycle.

Simonovits and Sós [9] proved the conjecture for paths, showing for large n that $f(n, P_{2t+3+\varepsilon}) = tn - \binom{t+1}{2} + 1 + \varepsilon$, where $\varepsilon = 0, 1$ and P_t is a path on t vertices. Jiang and West [7] considered $f(n, T)$ when T is a general tree of a given size. For cycles, Erdős et al. [4] conjectured that for every fixed $k \geq 3$ $f(n, C_k) = n(\frac{k-2}{2} + \frac{1}{k-1}) + O(1)$, and they obtained a C_k-free coloring of $E(K_n)$ using the conjectured number of colors. They noted that the conjecture holds for $k = 3$. Alon [1] proved the conjecture for $k \leq 4$ and proved that $f(n, C_k) \leq n(k-2) + \binom{k+1}{2}$ in general. Jiang and West [8] proved the conjecture for $k \leq 6$ and improved the general upper bound to $f(n, C_k) \leq n(\frac{k+1}{2} - \frac{1}{k-1}) - (k-2)$ for all k and to $f(n, C_k) \leq nk/2 - (k-2)$ when k is even. Axenovich and Jiang [3] initiated the study.
of the anti-Ramsey numbers for complete bipartite graphs. They showed for all $t \geq 3$ that $f(n, K_{2, t}) = \sqrt{t-2} \cdot n^{3/2} + O(n^{3/2})$ by proving that $f(n, K_{2, t}) - ex(n, K_{2, t-1}) = O(n)$.

Note that in the cases mentioned above when H is a path, a cycle, or a complete bipartite graph with one bipartite set of size 2, one has $f(n, H) - ex(n, H) = O(n)$. In this note, we establish a more general fact that if H is a graph in which each edge is incident to a vertex of degree two then $f(n, H) - ex(H) = O(n)$ always holds (which immediately implies the result obtained in [3]). In particular, this applies to graphs H obtained by subdividing each edge of any given graph G at least once. The claim follows from the following upper bound on $f(n, H)$ that holds for all (nonempty) graphs H.

Theorem 1.2. Given a graph H, let $H' = \{H - v : v \in V(H), d_H(v) = 2\}$. Suppose H has p vertices and q edges. For all positive integers n, we have

$$f(n, H) \leq ex(n, H') + bn,$$

where $b = \max\{2p - 2, q - 2\}$.

Now suppose H is a (nonempty) graph in which each edge is incident to a vertex of degree two. Let e be any edge in H. By our assumption, e is incident to a vertex v of degree two in H. Note that $H - e$ contains $H - v$ as a subgraph. This shows that every member of H contains a subgraph that is in H'. Thus we have $ex(n, H') \leq ex(n, H)$. This observation together with Theorem 1.2 and Proposition 1.1 yields

Theorem 1.3. Let H be a graph in which each edge is incident to a vertex of degree two. Suppose H has p vertices and q edges. Let $H = \{H - e : e \in E(H)\}$ and $b = \max\{2p - 2, q - 2\}$. We have

$$ex(n, H) \leq f(n, H) \leq ex(n, H) + bn.$$

Hence $f(n, H) - ex(n, H) = O(n)$, as $n \to \infty$.

It is known that $ex(n, G)$ grows at least super linearly in n for any graph G which is not a forest. Hence Theorem 1.3 implies

Corollary 1.4. If H is a graph containing at least two cycles in which each edge is incident to a vertex of degree two, then

$$f(n, H) = ex(n, H)(1 + o(1)),$$

where $H = \{H - e : e \in (H)\}$.

Note 363
For the rest of the paper, we give a proof of Theorem 1.2. Given a graph G and a subset $U \subseteq V(G)$, we use $G[U]$ to denote the subgraph of G induced by U. Given a vertex u in G, $N_G(u)$ denotes its neighborhood in G.

2. PROOF OF THEOREM 1.2

Let H be a given graph, and let $\mathcal{H}_2 = \{H - v : v \in V(H), d_H(v) = 2\}$. Suppose H has p vertices and q edges. Then each graph in \mathcal{H}_2 has $p-1$ vertices and $q-2$ edges. We introduce some notions for convenience. Given any graph $D \in \mathcal{H}_2$, by definition, $D = H - v$ for some vertex v of degree two in H. We use $a(D)$ and $b(D)$ to denote the two neighbors of v in H, and call them the two ends of D. Let $S(D) = \{a(D), b(D)\}$.

Vertices u_1, u_{k+1} are the two ends of R. For $k \geq 2$, if in the above definition, u_1, \ldots, u_k are distinct and $u_{k+1} = u_1$, then R is an \mathcal{H}_2-ring of length k.

Lemma 2.1. Let G be a graph on n vertices with more than $\text{ex}(n, \mathcal{H}_2) + (q-2)(n-1)$ edges. Then G contains an \mathcal{H}_2-ring.

Proof. Recall that each graph in \mathcal{H}_2 has $q-2$ edges. Let \mathcal{D} be a maximal collection of pairwise edge-disjoint subgraphs of G which belong to \mathcal{H}_2. Suppose \mathcal{D} contains m members. By the maximality of \mathcal{D}, $G - E(\mathcal{D})$ contains no subgraphs that belong to \mathcal{H}_2. Hence we have $e(G - E(\mathcal{D})) < \text{ex}(n, \mathcal{H}_2)$. Thus, $e(G) < \text{ex}(n, \mathcal{H}_2) + m(q-2)$. Since $e(G) > \text{ex}(n, \mathcal{H}_2) + (q-2)(n-1)$, it follows that $m > n-1$. Now, construct a graph F with $V(F) = V(G)$ as follows. For each member D (which is a graph in \mathcal{H}_2) of \mathcal{D}, where $S(D) = \{u, v\}$, we include uv as an edge in F. Since \mathcal{D} has m members, the resulting graph F is an n-vertex loopless multigraph with $m > n-1$ edges. Hence F contains a cycle C. The union of the members of \mathcal{D} which correspond to the edges C forms an \mathcal{H}_2-ring in G.

A graph T obtained from an \mathcal{H}_2-string R of length k by adding a new vertex x not in R and making it adjacent to the two ends of R is an \mathcal{H}_2 string-tie of length k. Note that H is an \mathcal{H}_2-string-tie of length 1.

Lemma 2.2. Let c be a coloring of $E(K_n)$ that contains a rainbow \mathcal{H}_2-string-tie. Then c contains a rainbow copy of H.

Proof. Let T be a rainbow \mathcal{H}_2-string-tie in c of minimum length. Suppose T is obtained from an \mathcal{H}_2-string R of length k by adding a vertex x not in R and making it adjacent to the two ends of R. Suppose R is the edge-disjoint union of D_1, \ldots, D_k, where $D_i \in \mathcal{H}_2$, and $S(D_i) = \{u_i, u_{i+1}\}$ for
all \(i \in [k] \). If \(k = 1 \) then \(T \) is a rainbow \(H \). So we may assume \(k \geq 2 \). Let \(T_1 = D_1 \cup xu_1 \) and \(T_2 = D_2 \cup \cdots \cup D_k \cup xu_{k+1} \). Since \(T \) is rainbow, the color \(c(xu_2) \) cannot be used in both \(T_1 \) and \(T_2 \). Now \(xu_2 \) completes a rainbow \(\mathcal{H} \)-string-tie with either \(T_1 \) or \(T_2 \), which is shorter than \(T \), a contradiction.

Lemma 2.3. Suppose \(c \) is an \(H \)-free coloring of \(E(K_n) \) and \(R \) is a rainbow \(\mathcal{H} \)-ring in \(c \). Let \(x \in V(K_n) - V(R) \). Suppose there exists \(y \in S(R) \) such that the color \(c(xy) \) is not used on the edges of \(R \), then \(c(xy') = c(xy) \) for all \(y' \in S(R) \).

Proof. Otherwise, suppose there exists \(y' \in S(R) \) such that \(c(xy') \neq c(xy) \). Vertices \(y \) and \(y' \) partition \(R \) into two \(\mathcal{H} \)-strings \(R_1, R_2 \) sharing \(y, y' \) as common ends. Since \(R \) is rainbow, one of \(R_1 \) and \(R_2 \) avoids the color \(c(xy') \). Suppose \(R_1 \) does. Now \(R_1 \cup \{xy, xy'\} \) is a rainbow \(\mathcal{H} \)-string-tie, and by Lemma 2.2, \(c \) contains a rainbow copy of \(H \), a contradiction.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. We use induction on \(n \), with the claim holding trivially for small values of \(n \). Let \(c \) be an \(H \)-free coloring of \(E(K_n) \) using \(f(n, H) \) colors. Let \(L \) be a representing graph of \(c \). If \(L \) contains no \(\mathcal{H} \)-ring, then by Lemma 2.1, we have \(f(n, H) = e(L) \leq ex(n, \mathcal{H}) + (q-2)(n-1) \leq ex(n, \mathcal{H}) + bn \), recalling that \(b = \max\{2p-2, q-2\} \). So we may assume that \(L \) contains an \(\mathcal{H} \)-ring \(R \) of length \(k \), where \(k \geq 2 \). Since \(c \) contains no rainbow \(H \), by Lemma 2.2, \(L \) contains no \(\mathcal{H} \)-string-tie.

Claim 2.4. The number of edges in \(L[V(R)] \) that are incident to \(S(R) \) is at most \((p-1)k\).

Proof of Claim 2.4. Suppose \(R \) consists of \(D_1, \ldots, D_k \), with \(D_i \in \mathcal{H}_2 \), and \(S(D_i) = \{u_i, u_{i+1}\} \) for \(i \in [k] \) (with indices taken modulo \(k \)). Let \(v \in V(R) \). Suppose \(N_L(v) \cap S(R) = \{u_{j_1}, u_{j_2}, \ldots, u_{j_m}\} \), where \(j_1 < j_2 < \cdots < j_m \). For each \(i \in [m] \), let \(F_i = \bigcup_{l}^{j_{i+1} - 1} D_l \) (with indices \(l \) taken modulo \(k \)). If \(v \notin V(F_i) \) for some \(i \in [m] \) then \(F_i \cup \{vu_{j_1}, vu_{j_{m-1}}\} \) would form an \(\mathcal{H} \)-string-tie in \(L \), a contradiction. Hence \(v \in V(F_i) \) for all \(i \in [m] \). So, in particular, \(v \) is contained in at least \(m \) of the \(D_i ' \)s. Hence we have

\[
\begin{align*}
\# \text{ edges in } L[V(R)] \text{ incident to } S(R) & \leq \sum_{v \in V(R)} \# \text{ edges in } L \text{ between } v \text{ and } S(R) \\
& \leq \sum_{v \in V(R)} |\{i \in [k] : v \in V(D_i)\}| \\
& = \sum_{i=1}^{k} |V(D_i)| = k(p-1).
\end{align*}
\]
Now, let \(K = K_n \), and let \(K' = K - \{ u_1, \ldots, u_{k-1} \} \). Consider any color \(\alpha \) that is used by \(c \) in \(K \) but not in \(K' \). By the definition of \(L \) as a representing graph of \(c \), there is an edge \(e \) of \(L \) such that \(c(e) = \alpha \). Since \(\alpha \) is not used in \(K' \), one of the endpoints of \(e \) must be in \(\{ u_1, \ldots, u_{k-1} \} \). Suppose \(e = xu_i \), where \(i \in [k-1] \). Suppose \(x \notin V(R) \). Then \(xu_i \) does not lie in \(R \) and therefore \(c(xu_i) \) is not used on the edges of \(R \) (recall that edges of \(L \) have distinct colors). By Lemma 2.3, we have \(\alpha = c(xu_i) = c(xu_k) \), contradicting our assumption that \(\alpha \) is not used in \(K' \) (note that \(xu_k \in E(K') \)). Hence \(x \in V(R) \), and \(\alpha = c(xu_i) \) is used on an edge of \(L[V(R)] \) that is incident to \(S(R) \). By Claim 2.4, there are at most \((p-1)/k \) such colors. Now, since \(K' \) is a complete graph of order \(n-k+1 \), and \(c \) restricted to \(K' \) is \(H \)-free, by induction hypothesis we have

\[
f(n, H) - (p-1)k \leq \# \text{ colors used by } c \text{ in } K'
\]

\[
\leq ex(n-k+l, H_2) + bn - (p-1)k \leq ex(n, H_2) + bn,
\]

recalling that \(b = \max\{2p-2, q-2\} \) and \(k \geq 2 \). This completes the proof of Theorem 1.2. \(\square \)

ACKNOWLEDGMENT

The author is indebted to the referee for helpful comments.

REFERENCES